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Abstract 

We show that the flow from the ultraviolet to the infrared sector of any high-dimensional nonlinear field 

theory approaches chaotic dynamics in a universal way. This result stems from for the dissipative effect of 

non-vanishing perturbations and implies that the infrared attractor of effective field theories replicates 

the geometry of multifractal sets. In particular, the Standard Model (SM) Lagrangian is characterized by a 

dominant generalized dimension 2SMD  , while the same dimension of the Einstein-Hilbert Lagrangian 

turns out to be 4GRD  . On the one hand, this finding disfavors any field-theoretic unification of SM 

and General Relativity (GR). On the other, it hints that the continuous spectrum of dimensions lying 

between SMD  and GRD  may naturally account for the existence of non-baryonic Dark Matter. 

 

1. Introduction 

Few theorists would dispute the compelling success enjoyed by the two pillars of 

contemporary science, the Standard Model of high-energy physics (SM) and General 

Relativity (GR). As effective field-theories, SM and GR describe remarkably well a 

wealth of phenomena, from sub-nuclear physics to the realm of astronomical scales and 

cosmology. However, several long-standing issues hint that either new physics or a 



2 
 

deeper conceptual structure are required for a complete account of Nature beyond SM 

and GR [  ]. 

Recently, H. Nicolai has summarized the main foundational challenges confronting both 

the SM and GR [  ]. His critique targets the vastly uncharted territory lying beyond 

perturbative quantum field theory (QFT), as well as the inherent singularities of the 

strong gravity regime in GR:  

“But the real problem with the SM is theoretical: it is not clear whether it makes sense 

at all as a theory beyond perturbation theory, and these doubts extend to the whole 

framework of quantum field theory (QFT) (with perturbation theory as the main tool 

to extract quantitative predictions). The occurrence of “ultraviolet” (UV) divergences in 

Feynman diagrams, and the need for an elaborate mathematical procedure called 

renormalisation to remove these infinities and make testable predictions order-by-

order in perturbation theory, strongly point to the necessity of some other and more 

complete theory of elementary particles.  

On the GR side, we are faced with a similar dilemma. Like the SM, GR works extremely 

well in its domain of applicability and has so far passed all experimental tests with 

flying colours, most recently and impressively with the direct detection of 

gravitational waves (see "General relativity at 100"). Nevertheless, the need for a 

theory beyond Einstein is plainly evident from the existence of space–time 

singularities such as those occurring inside black holes or at the moment of the Big 

Bang. Such singularities are an unavoidable consequence of Einstein’s equations, and 

the failure of GR to provide an answer calls into question the very conceptual 

foundations of the theory.”  

http://cerncourier.com/cws/article/cern/67451
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In this work, we do not proceed along the path of Quantum Gravity, as suggested by 

Nicolai and many other researchers in the field. Working in the context of the 

emergence paradigm, we model the flow from the ultraviolet to the infrared regime of 

effective field theory starting from the universal behavior of far-from-equilibrium 

nonlinear dynamic systems. The underlying premise is that the asymptotic trajectory of 

any high-dimensional nonlinear dynamic system ends up on a strange attractor, under 

the steady influence of non-vanishing perturbations from equilibrium. The 

perturbations can be naturally associated with either primordial density fluctuations in 

the early Universe or unbalanced high-energy vacuum fluctuations of QFT. The bottom 

line of this approach is that strange attractors form the infrastructure of Lagrangian 

field theory. Further recalling that strange attractors, as fingerprints of chaos, bear 

resemblance to equilibrium statistical mechanics via ergodicity, global stability and 

invariant probability distributions [  ], we proceed to the study of effective field theory 

using the tools of multifractal analysis.  

2. The long-term approach to chaos in nonlinear dynamics 

The downward flow of a primary system of variables describing the ultraviolet sector 

may be mapped to a system of differential equations having the universal form 

 ' ( ( ), ( ), , ( ))x f x D       (1) 

Here, x  is the vector 0f primary variables  , 1,2,...,ix x i n   and , , D   denote, 

respectively, the control parameters vector  , 1,2,...j j m   , the evolution parameter 
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and the dimension of the embedding space. If the dimension of the embedding space is 

taken to be an independent variable or a control parameter, the system (1) reduces to 

 ' ( ( ), ( ), )x f x      (2) 

… 

 ( ) ( ) ( )sx x y     (3) 

… 

 ' ({ }, ) ({ }, )s sy f x y f x      (4) 

… 

 ' ( ) ({ }, )j j

j

y L y h y     (5) 

… 

 2' ( )cz uz      (6) 

 3' ( )cz z uz      (7) 

 2' ( )cz z uz      (8) 

… 

 
2

0' [( ) ]cz i z uz z        (9) 

… 
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 l

l c K      (10) 

… 

3. Multifractals: a concise overview 

As it is known, the box-counting dimension defines the main scaling property of fractal 

structures and is a measure of their self-similarity. Multifractals are global mixtures of 

fractal structures, each characterized by its local box-counting dimension. Self-similarity 

of multifractals is accordingly defined in terms of a multifractal spectrum describing the 

overall distribution of dimensions. In the language of chaos and complexity theory, 

multifractal analysis is the study of invariant sets and is a powerful tool for the 

characterization of generic dynamical systems. 

In the recursive construction of multifractal sets from 1,2...,i N  local scales 
ir  with 

probabilities
ip , the definition of the box-counting dimension leads to [  ]   

 ( )

1

1
N

q q

i i

i

p r




   (11) 

in which 

 
1

1
N

i

i

p


   (12) 

Here, q  and ( )q  are two arbitrary exponents and the latter is typically presented as 

 ( ) (1 )
q

q q D     (13) 
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where qD   plays the role of a generalized dimension.  

The closure relationship (11) may be extended to a continuous distribution of scales in 

D - dimensional space time. It reads 

 
( )( ) ( ) 1q q Dp x r x d x   (14) 

2. GR as topological analogue of SM  

Consider now the field makeup of the SM, formed by 16 independent “flavors”: two 

massive gauge bosons ( , )W Z , gluon ( )g , the Higgs scalar ( )H , neutrinos, charged 

leptons and quarks. The SM structure can be conveniently organized in the 4 4  matrix 

 

 
 
 
 
 
 

e
g

W e

Z u c b

H d s t

SM

 
  

 
  (15) 

The photon (  ) is absent from (15) as it is built from the underlying components of the 

electroweak sector, whereby 
3( , )W B    and 

3( , )B B W Z    [  ]. 

It was shown in [ ] that, near the electroweak scale 
EWM , the spectrum of particle 

masses 
im  entering the SM satisfies the “closure” relation 

 
16

2

1

( ) 1i

i EW

m

M

   (16) 

It is apparent that (15) shares the same formal structure with the metric tensor of GR, 

that is, 
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00 01 02 03

10 11 12 13

20 21 22 23

30 31 32 33

 
 
 
 
 
 

g g g g

g g g g

g g g g

g g g g

GR   (17) 

where there are only 10 independent entries under the standard assumption g = g . 

Starting from the GR definitions of interval and proper time leads to ( 1c  ) 

 
3 3

0 0

1
dx dx

g
d d

 



    

  (18) 

subject to the constraint 

 
3

0

1,

0,
g g

 

  



 


 


 







   (19) 

Comparing ( ), ( ) and ( ) reveals the following mapping 

1:
2

( , , 4i qGR p g g q D

   , ( ) 2q  ) 

(20) 

: ( 1, 0, ( ) 2i qSM p q D q    ) 

It is instructive to note that 0 2D   coincides with the fractal dimension of quantum 

mechanical paths in free space [  ], whereas 1 2 4D   recovers the four-dimensionality of 

geodesic paths in classical spacetime. 

A couple of conclusions may be drawn from (20):  
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 GR may be viewed as topological analogue of the SM, defined by a half-unitary 

exponent q  and a dimension that is twice the SM dimension (that is, 1/2 02D D ). 

  The spectrum of particle mass scales ( i

EW

m
M

) and the four-vector of 

differential coordinates ( dx
d




) form the basis for the multifractal description of 

SM and GR, respectively. 

3. Multifractal formulation of effective field theories 

Effective Lagrangians in QFT may be described as sums of polynomial terms having the 

generic form  

 , , 1 1, 1

, , , ,

( , ) [ ( ) ( ) ( ) ( ) ]k l m n

i i i i i i

i k l m n

L c c c              (21) 

To simplify notation, we focus below on the basic unit entering the sum (21), namely on  

 11 12 22 11 1 12 1 2 22 2( , ) ( ) ( ) ( ) ( ) 1k l m n k l m n

uL c c c c z c z z c z                (22) 

in which 

 
   

1 1 2 2, , ,
( , ) ( , )( , ) ( , )

k l m n
k l m nz z z z

L LL L

   

      

 
   

  
 (23) 

1,2,3c  are constants at given setting, for example, at a given energy scale. Therefore, 

 11 12 21 22 1k l m nr r r r    (24) 

where 



9 
 

11 11 1 12 12 1, ,k k l lr c z r c z  21 12 2 22 22 2,m m n nr c z r c z   

If 1,2,3c  depend on the field content or their derivatives, (24) assumes the general form 

 31 2

11 11 11 12 12 21 12 21 22 22 22( ) ( , ) ( ) 1
qq qk l m nc r r c r r r r c r r    (25) 

where 1,2,3q  are non-vanishing exponents and 

 11 12 22 1c c c    (26) 

… 

4. GR as multifractal set 

Einstein-Hilbert action: 

 4S R g d x   (27) 

… 

 
, ,( )R g R g       

                    (28) 

… 

 , ,( ) 2 Gg g L g  

         (29) 

… 

 
4

( ) 1G

G

dS
L g g

Lgd x

   

        

   

   
       


 (30) 
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… 

 
3

0

1,

0,
g g

 

  



 


 


 







  (31) 

… 

5. SM as multifractal set 

SM Lagrangian  

 †1
( . .) ( ) ( ) ( )

4

a a i i i i i j

SM L L R R ij L R

V

L V V f i D f f i D f Y f Hf h c D H D H V H   

            (32) 

Here, the summation convention over repeated indices is assumed, with ( , ) 1,2,3i j 

extending over the three fermion families [ ]. The vector fields V corresponds to the 

three gauge groups of the SM, namely (1) , (2)Y LU SU  and (3)CSU , 

  1,2,3 1....8, ,a aV B W G   (33) 

to which we associate the field-strength tensors 

 a a a b c

abcV V V g f V V           (34) 

and covariant derivative operators 

 a a

V V

V

D i g t V       (35) 

The last couple of terms denote the kinetic and potential contributions of the Higgs 

field, 
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 2 † † 2( ) ( )HV H m H H H H    (36) 

… 
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